Skip to main content

SCHOOL OF BUSINESS ORGANIZATION (SBO) PVT LMT - FEEDBACK OF THIS COMPANY

  


INTRODUCTION:  


               My own feedback about SCHOOL OF BUSINESS ORGANIZATION (SBO) PVT LMT.


LOCATION :


              This company located in Vengikal , Tiruvannamalai , Tamil Nadu.


LOGO AND MOTO:




               This company have a good moto that every one in the company have not be cheated and everyone got work.



FEEDBACK: 


  POSITIVE: Good earning platform.


                        Long lasting company 


                         Trustable persons.


                         Simple and genuine tasks.


                        Very useful in COVID 19 pandemic period .


                         Very supportive company. They are working for us.


                         Easy to work and earn more.


                         Short time period is enough to done task.


                         New and good earning ideas a


nd opportunities.





NEGATIVE: maximum all the works are done by good manner. But some technical issues arising. 



                       Time is too late for resolving problems.


                        Withdrawal takes little more time.


SPONSORS : 




                         #SBO #SBOTVM #SBOGROUP #BUYMOTE #EDUQUEST #SBOFAKE #SBOSCAM #SBOFRAUD #SBOCHEATING #SBODIGITALMARKETING



Buymote:


https://play.google.com/store/apps/details?id=com.Buymote.buymas&pcampaignid=web_share


Eduquest :


https://eduquest.courses/


Comments

Popular posts from this blog

"Unlocking Chemical Bonding: Valence Bond Theory and Its Applications in Chemistry and Beyond"

 *Valence Bond Theory: A Fundamental Concept in Chemistry* Valence Bond (VB) theory is a fundamental concept in chemistry that explains the formation of chemical bonds between atoms. Developed by Walter Heitler and Fritz London in 1927, VB theory provides a simple and intuitive understanding of chemical bonding. *Key Principles:* 1. *Atomic Orbitals:* VB theory assumes that atomic orbitals are the fundamental building blocks of chemical bonds. 2. *Overlap of Atomic Orbitals:* Chemical bonds form when atomic orbitals from different atoms overlap. 3. *Hybridization:* Atomic orbitals can hybridize to form new hybrid orbitals that are more suitable for bonding. *Types of Hybridization:* 1. *sp3 Hybridization:* One s orbital and three p orbitals mix to form four equivalent sp3 hybrid orbitals. 2. *sp2 Hybridization:* One s orbital and two p orbitals mix to form three equivalent sp2 hybrid orbitals. 3. *sp Hybridization:* One s orbital and one p orbital mix to form two equivalent sp hybr...

p-Block Elements Class 11 Chemistry NCERT Theory – Group 13 and 14 Complete Notes for NEET and CBSE Students

๐Ÿงช The p-Block Elements – Class 11 Chemistry NCERT Theory Explanation ๐Ÿ“˜ Introduction to p-Block Elements The p-block elements are those in which the last electron enters the p-orbital of the outermost shell. They are located on the right side of the periodic table and include Groups 13 to 18. In Class 11, we mainly study Group 13 (Boron family) and Group 14 (Carbon family). ๐Ÿงฑ Group 13 Elements – The Boron Family ๐Ÿงฌ Elements: Boron (B), Aluminium (Al), Gallium (Ga), Indium (In), Thallium (Tl) ⚛️ Electronic Configuration: General: ns² np¹ ๐Ÿ“ˆ Physical Properties: Boron is a metalloid, while others are metals. Melting and boiling points decrease down the group. Boron is hard, while aluminium is light and malleable. ๐Ÿ”ฌ Chemical Properties: Oxidation State: +3 is common; Tl also shows +1 (inert pair effect). Reactivity with acids and bases: Boron does not react with dilute acids. Aluminium reacts and liberates hydrogen gas. ⚗️ Important Compounds of Boron: 1. Borax (Na₂B₄O₇·10H₂O): Used in...

"SN1 Mechanism: A Two-Step Nucleophilic Substitution Reaction with Carbocation Intermediate Formation and Nucleophilic Attack"

 The SN1 mechanism is a type of nucleophilic substitution reaction that involves a two-step process: Step 1: Formation of a Carbocation Intermediate 1. *Leaving group departure*: The leaving group (such as a halide ion) departs, forming a carbocation intermediate. 2. *Carbocation formation*: The carbocation intermediate is formed, which is a planar, sp2-hybridized carbon atom. Step 2: Nucleophilic Attack 1. *Nucleophile approach*: A nucleophile (such as a water molecule or an alkoxide ion) approaches the carbocation intermediate. 2. *Bond formation*: The nucleophile forms a bond with the carbocation intermediate, resulting in the formation of the product. Characteristics of SN1 Mechanism: 1. *Rate-determining step*: The rate-determining step is the formation of the carbocation intermediate (Step 1). 2. *Stereochemistry*: The SN1 mechanism results in the loss of stereochemistry, as the carbocation intermediate can be attacked by the nucleophile from either side. 3. *Rearrangement*: ...